Analyzing Tensor Power Method Dynamics in Overcomplete Regime
نویسندگان
چکیده
We present a novel analysis of the dynamics of tensor power iterations in the overcomplete regime where the tensor CP rank is larger than the input dimension. Finding the CP decomposition of an overcomplete tensor is NP-hard in general. We consider the case where the tensor components are randomly drawn, and show that the simple power iteration recovers the components with bounded error under mild initialization conditions. We apply our analysis to unsupervised learning of latent variable models, such as multi-view mixture models and spherical Gaussian mixtures. Given the third order moment tensor, we learn the parameters using tensor power iterations. We prove it can correctly learn the model parameters when the number of hidden components k is much larger than the data dimension d, up to k = o(d). We initialize the power iterations with data samples and prove its success under mild conditions on the signal-to-noise ratio of the samples. Our analysis significantly expands the class of latent variable models where spectral methods are applicable. Our analysis also deals with noise in the input tensor leading to sample complexity result in the application to learning latent variable models.
منابع مشابه
Sample Complexity Analysis for Learning Overcomplete Latent Variable Models through Tensor Methods
We provide guarantees for learning latent variable models emphasizing on the overcomplete regime, where the dimensionality of the latent space can exceed the observed dimensionality. In particular, we consider multiview mixtures, spherical Gaussian mixtures, ICA, and sparse coding models. We provide tight concentration bounds for empirical moments through novel covering arguments. We analyze pa...
متن کاملLearning Overcomplete Latent Variable Models through Tensor Methods
We provide guarantees for learning latent variable models emphasizing on the overcomplete regime, where the dimensionality of the latent space exceeds the observed dimensionality. In particular, we consider multiview mixtures, ICA, and sparse coding models. Our main tool is a new algorithm for tensor decomposition that works in the overcomplete regime. In the semi-supervised setting, we exploit...
متن کاملWhen are Overcomplete Representations Identifiable? Uniqueness of Tensor Decompositions Under Expansion Constraints
Overcomplete latent representations have been very popular for unsupervised feature learning in recent years. In this paper, we specify which overcomplete models can be identified given observable moments of a certain order. We consider probabilistic admixture or topic models in the overcomplete regime. While general overcomplete admixtures are not identifiable, we establish {\em generic} ident...
متن کاملWhen are Overcomplete Topic Models Identifiable? Uniqueness of Tensor Tucker Decompositions with Structured Sparsity
Overcomplete latent representations have been very popular for unsupervised feature learning in recent years. In this paper, we specify which overcomplete models can be identified given observable moments of a certain order. We consider probabilistic admixture or topic models in the overcomplete regime, where the number of latent topics can greatly exceed the size of the observed word vocabular...
متن کاملProvable Learning of Overcomplete Latent Variable Models: Semi-supervised and Unsupervised Settings
We provide guarantees for learning latent variable models emphasizing on the overcomplete regime, where the dimensionality of the latent space can exceed the observed dimensionality. In particular, we consider spherical Gaussian mixtures and multiview mixtures models. Our algorithm is based on method of moments, and employs a tensor decomposition method for learning. In the semi-supervised sett...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of Machine Learning Research
دوره 18 شماره
صفحات -
تاریخ انتشار 2017